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a b s t r a c t

Robust, discriminative and computationally efficient feature extraction is vital for a successful real-world
face recognition system. To this end, we present a novel local feature descriptor, named patterns of
Weber magnitude and orientation (PWMO), for face representation and recognition. Instead of merely
taking advantage of the pixel intensity which is sensitive to variant impact factors such as illumination
variations and noises, we describe a pixel with two robust statistic attributes of the local patch centered
around it: the histogram of Weber magnitude and the dominant Weber orientation. By encoding them in
a self-similarity manner with patch-based local binary patterns (p-LBP) and patch-based local XOR
patterns (p-LXP) respectively, we obtain a robust representation for face images. To further enhance the
discriminative power, we extend PWMO to its multi-scale version, and apply the block-based Fisher's
linear discriminant (BFLD) to reduce the dimensionality and select the most discriminative features. The
Fisher separation criterion (FSC) based block weighting scheme is incorporated for discriminative
classification. We evaluate the proposed face representation method on two publicly available face
databases: FERET and FRGC version 2.0 experiment 4 (FRGC-204). The recognition results demonstrate
that the proposed method performs much better than most of the state-of-the-arts, and achieves
comparable recognition performance with the recently proposed state-of-the-art algorithm based on the
fusion of Gabor magnitude and phase, with only 1=7 storage requirement and 1=10 computational cost.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the broad prospect in real-world applications such as su-
rveillance, biometrics, human computer interaction and image retrieval,
automatic face recognition remains an extensively studied topic in
computer vision communities. During the last several decades, hun-
dreds of effective technologies have been proposed to address this
problem [1,2], and the performance evaluation results on large-scale
face databases have demonstrated that machine vision can surpass
human vision under well-controlled circumstances [3]. However, face
recognition under uncontrolled circumstances is still challenging and
remains an open problem, due to large intrapersonal variations which

largely impact the appearances of face images, such as expression,
illumination, pose, noise, occlusion, and aging.

As in any pattern classification tasks, efficient feature extraction is
acknowledged to be vital for designing a successful face recognition
system. Basically, existing feature extraction technologies for face
representation could be divided into two categories: holistic feature
extraction and local feature extraction. Holistic feature extraction
usually bases on the subspace learning or spatial-frequency trans-
formation technologies. The former exploits the whole face images to
construct either a linear subspace by subspace learning methods
such as principal component analysis (PCA) [4], Fisher's linear
discriminant (FLD) [5], independent component analysis (ICA) [6],
local preserving projection (LPP) [7], unsupervised discriminant
projection (UDP) [8], or a nonlinear subspace by their kernel
counterparts [9]. The latter utilizes the spatial-frequency transforma-
tion technologies such as Fourier transform [10], wavelets [11], and
discrete cosine transform [12].

Among variant local feature descriptors, local binary patterns (LBP)
and Gabor wavelets have been recognized as the most successful ones
[13]. LBP is a computationally efficient nonparametric descriptor
originally designed for texture analysis [14], which encodes the local
patterns in a self-similarity manner by comparing the central pixel
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with its neighbors and can well describe the local image structures.
Recently, inspired by the pioneering work and its remarkable results
on FERET face database provided by Ahonen et al. [15], face repre-
sentation based on the spatial histogrammodel of LBP, which canwell
capture both the structure and texture information, arouses increasing
interest and becomes one of the most popular and successful
technologies in face recognition applications. In the last few years,
numeric LBP variants have been proposed and successfully applied to
face recognition tasks [16]. For example, Tan and Triggs [17] proposed
local ternary patterns (LTP) to alleviate the sensitivity to the noises and
near-uniform image regions. Local derivative pattern (LDP) [18] is a
generalization of LBP which aims at capturing higher-order local
information. Three-Patch LBP (TPLBP) and Four-Patch LBP (FPLBP)
were proposed by Wolf et al. [19] to explore and encode similarities
between neighboring image patches rather than neighboring pixels.
Recently, semantic pixel sets LBP (spsLBP) [20] obtains histograms of
semantic pixel sets based LBP with a robust code voting. However,
most LBP variants are inadequate for nonmonotonic illumination
changes.

The Gabor wavelets resemble the receptive fields of simple cells in
mammalian's visual cortex, which are spatially localized and selective
to spatial orientations, and they have been theoretically proved to be
optimally localized in the space and frequency domains [21]. The
Gabor feature and its variants have been extensively and successfully
used in face recognition [22,23]. Compared with LBP, Gabor feature is
more robust to several variations such as illumination and noise.
However, the application of real-time face recognition is restricted due
to the time-consuming feature extraction process by convolving a face
image with Gabor filter banks and the relatively high feature
dimensionality. For example, Gabor feature extractionwith filter banks
of 5 scales and 8 orientations as typically used would require 40
convolutions. As for a 128�128 image, the dimensionality of its Gabor
feature vector would be up to 40�128�128¼655,360.

Recently, some researchers attempted to apply LBP on stable pixel
attributes rather than the pixel intensity to seek more effective face
representations. For example, Zhang et al. [24] presented local Gabor
binary patterns (LGBP) by applying LBP on Gabor magnitudes. Zhang
et al. [25] proposed local Gabor XOR patterns (LGXP) by performing on
Gabor phases local XOR patterns (LXP), which is a variant of LBP. Xie
et al. [26] introduced the fusion of LGBP and LGXP and demonstrated
its impressive results on FERET and FRGC-204. However, these
methods still suffer from the disadvantage of high computational cost,
which motivates researchers to seek more efficient local descriptors
for face representation. Very recently, Vu and Caplier [27] attempted
to extend the pixel-based self-similarity in LBP to patch-based self-
similarity, in which a central pixel is represented by the accumulated
gradient magnitudes across different directions with the help of the
histogram of gradient (HOG) in a local patch centered around it. The
proposed descriptor, named patterns of oriented edge magnitude
(POEM), achieved impressive performance on FERET and LFW face
databases, and was declared to be the first computationally efficient
descriptor with comparable performance to its Gabor's counterparts.
However, as indicated in [28], the gradient magnitude is sensitive to
illumination variations. Our further experiments on FRGC-204 in
Section 3 demonstrate the inferior performance of POEM compared
with those based on Gabor features in poor illumination and
uncontrolled circumstances.

To develop a successful face recognition system for real-time appli-
cations, it is important to evaluate which feature extractors are
suitable. Generally speaking, a well-designed feature extractor should
meet the following three criteria [27]: (1) robustness, which means it
should minish the intraperson variations; (2) distinctiveness, which
means it should retain enough discriminative power for interperson
variations; and (3) high computational efficiency, which requires the
feature extraction process should not be time-consuming and the final
face representation features should not be storage-consuming.

Compared with holistic feature extraction, it is reported by Heisele
et al. [29] that local feature extraction improves the recognition rates
by 60%, probably due to the robustness to variations of facial
expression, illumination and occlusion, etc. As for local feature
extractors, to the best of our knowledge, on large-scale challenging
face databases such as FRGC-204, no other existing descriptors can
obtain better or comparable performance than those based on Gabor
features with much less computational cost.

Based on a preliminary conference version of this paper [30], we
propose a local descriptor which satisfies the three aforementio-
ned criteria, named patterns of Weber magnitude and orientation
(PWMO), for effective face representation with efficient computations
for face recognition. In this work, we extensively analyze and illustrate
the effectiveness and robustness of PWMO as face representation, and
extend it to a multiscale version for further improvement. We further
adopt a block-based Fisher linear discriminant (BFLD) for discrimina-
tive feature selection, which exploits Fisher separation criterion as
block weighting scheme. The superiority of PWMO comes from
several aspects: (1) instead of the pixel intensity, two human percep-
tion inspired illumination- and noise-insensitive statistics of a local
patch, i.e., the histogram of Weber magnitude (HWM) and the
dominant Weber orientation (DWO), are applied to represent the
central pixel, thus making PWMO robust to illumination and noise
variations; (2) the local information for face images are encoded in a
patch-based self-similarity manner by performing patch-based LBP
(p-LBP) and patch-based LXP (p-LXP) on HWM and DWO, respectively,
thus making PWMO robust to pose variation within certain degrees;
(3) the spatial histogrammodel is utilized for face representation, thus
retaining the structure information and making PWMO robust to
small registration errors; (4) multi-scale encoding scheme is utilized to
capture both local and more global structures; and (5) both the
calculation of HWM and DWO and the encoding processes are
computationally efficient. Furthermore, we take advantage of block-
based Fisher's linear discriminant (BFLD) to select the most discrimi-
native compact features, and the block weighting scheme based on
Fisher separation criterion (FSC) is proposed for discriminant classifi-
cation. Extensive experiments are conducted on three large face
databases for evaluating the performance and efficiency of the
proposed method, and the results demonstrate that it is comparable
to the recently proposed algorithm based on the fusion of Gabor
magnitude and phase, which has much higher computational effic-
iency.

The remainder of this paper is organized as follows. Section 2
briefly describes the definition of Weber magnitude and orientation,
and proposes a generalized formulation of p-LBP and p-LXP, and then
details the proposed PWMO feature extraction process. In Section 3,
experimental results and analysis are provided to illustrate the
effectiveness and efficiency of our method. Section 4 concludes
the paper.

2. Patterns of Weber magnitude and orientation (PWMO) for
face representation

2.1. Weber magnitude and orientation

Weber's law suggests that for a stimulus, the ratio between the
smallest perceptual change and the background is a constant,
which implies that stimuli are perceived not in absolute terms but
in relative terms. Inspired from this, Chen et al. [31] proposed a
local descriptor named Weber local descriptor (WLD) for the task
of texture classification, which consists of two components:
differential excitation and orientation. The former describes the
relative intensity differences of a central pixel against its neigh-
bors, and the latter is the gradient orientation of the central pixel.
The two could provide complementary information for local
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pattern description, and WLD has empirically proved to be more
effective than LBP, SIFT and Gabor for texture classification tasks
[31].

In our previous work, we theoretically proved the differential
excitation part is illumination insensitive and proposed an efficient
illumination-insensitive representation approach (namely, Weberface
[32]) for face images under uneven illumination conditions. The
orientation part is also illumination insensitive according to the
Gradientface approach proposed by Zhang et al. [33]. Both Weberface
and Gradientface take advantage of Gaussian filtering as a preproces-
sing step to alleviate the side-effect of noise and shadow, and this step
proves to be important for robust face recognition.

We define Weber magnitude and orientation in this subsection.
As mentioned above, for a face image I, Gaussian filtering is first
performed as a preprocessing step:

I0 ¼ InGðx; y;σÞ; ð1Þ

where n is the convolution operator and

Gðx; y;σÞ ¼ 1
2πσ2 exp �x2þy2

2σ2

� �
; ð2Þ

is the Gaussian kernel function with standard deviation σ.
Weber magnitude is defined as follows:

Weber magnitude : ξmðxcÞ ¼ arctan α
Xp�1

i ¼ 0

xc�xi
xc

 !
; ð3Þ

where the arctangent function is used to prevent the range of the
output from being too large and thus could partially suppress the side-
effect of noise. xc denotes the center pixel, and the set
fxi; i¼ 0;1;…; p�1g are the neighboring pixels as illustrated in
Fig. 1(a). p is the number of neighbors, and α is a parameter for
adjusting (magnifying or shrinking) the intensity difference between
neighboring pixels. Note that ξmðxcÞ ranges in ½�π=2;π=2�. If ξmðxcÞ is
positive, it implies that central pixel is lighter than the surroundings. If
ξmðxcÞ is negative, the central pixel is darker than the surroundings. If
ξmðxcÞ is close to zero, then it mainly corresponds to a flat area.

As shown in Fig. 2, we plot an average histogram of Weber
magnitude over 10,000 face images. One can find that there are
more frequencies at the center of the average histogram (i.e.,
[�π=6;π=6]). It is mainly due to the relatively large area of flat
regions in face images such as forehead and cheeks. Although
there are less frequencies at the two sides of the average
histogram (i.e., [�π=2; �π=3] and [π=3;π=2]), they correspond
to salient regions such as eyebrows, eyes, lips, and noses, which
are important for face recognition.

Weber orientation is defined as follows:

Weber orientation : ξoðxcÞ ¼ arctan
x1�x5
x3�x7

� �
; ð4Þ

where x1�x5 and x3�x7 indicate the intensity difference in x and y
direction, respectively. We rescale ξoðxcÞ to the range of ½0;2π�. Fig. 3
shows the average histogram of Weber orientation over 10,000 face
images. One can see that the frequencies are relatively uniform except
two peaks at around π=2 and 3π=2 due to the delimitation effect of
the arctangent function.

Fig. 1(b)–(d) illustrates two sample face images, their corre-
sponding Weber magnitudes and Weber orientations. As can be
seen, both Weber magnitude and orientation are insensitive to
illumination variations. Another significant merit of Weber mag-
nitude and orientation is their robustness to noises. It results from
two factors: one is directly from the noise removal effect of the
preprocessing by Gaussian filter (Eq. (1)); the other can be easily
concluded from the definitions of Weber magnitude (Eq. (3)) and
Weber orientation (Eq. (4)), including two aspects: (a) because
they are both defined in the form of ratio images, Weber
magnitude and orientation are robust to multiplicative noise;
(b) the gradient calculation and the arctangent function tend to
suppress the side-effect of noises.

Fig. 1. (a) Illustration of a pixel and its eight neighbors; (b) original images; (c) Weber magnitudes; (d) Weber orientations.

Fig. 2. The average distribution of Weber magnitude over 10,000 face images.
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2.2. Generalized patch-based LBP (p-LBP) and LXP (p-LXP)

Face representation by the spatial histogram of LBP can encode
both texture and structure information, and thus obtains impress-
ive results by performing on gray image [15], Gabor magnitude
[24,26] and Gabor phase [25,26]. Traditional LBP encodes each
pixel in a self-similarity manner with eight bit code by comparing
the pixel intensity with that of its neighbors. Formally, it could be
described as follows:

LBPðxc; ycÞ ¼
X7
n ¼ 0

2nsðIc� InÞ; ð5Þ

in which ðxc; ycÞ is the location of the central pixel. Ic and In are the
intensity of the central pixel and its n-th neighbor, and s(u) is 1 for
uZ0 and 0 otherwise. However, the pixel intensity is sensitive to
nonmonotonic illumination and pose variations. In this subsection,
we further extend it to the generalized patch-based LBP (p-LBP),
which encodes each pixel by comparing certain statistic attributes
of the neighboring patch with that of the patch centered at the
current pixel. Basically, p-LBP can be formulated as follows:

p�LBPðxc; ycÞ ¼
X7
n ¼ 0

2nDðA1ðPr
cÞ;A1ðPr

cRn
ÞÞ;…;

"

X7
n ¼ 0

2nDðAqðPr
cÞ;AqðPr

cRn
ÞÞ
#
; ð6Þ

in which ðxc; ycÞ is the location of the central pixel. Pcr is the image
patch centered at ðxc; ycÞ with radius equal to r, and cRn ðn¼ 0;1;…;7Þ
are the neighboring pixels which are uniformly distributed on a ring of

radius R around ðxc; ycÞ. AðPr
cÞ ¼ ½A1ðPr

cÞ A2ðPr
cÞ ⋯ AqðPr

cÞ� is the pre-
defined statistic attributes for image patch Pc

r, and q is the number of
attributes. Here note that AðPr

cÞ could be either a scalar (e.g., average
intensity as in [34]) or a vector (e.g., histogram of gradient orientation
as in [27]). The similarity measure is defined by

DðAiðPr
cÞ;AiðPr

cRn
ÞÞ ¼ 1; AiðPr

cÞ�AiðPr
cRn
ÞZ0

0 otherwise:

(
ð7Þ

The encoding process of p-LBP is illustrated in Fig. 4. We can
easily conclude that traditional LBP descriptor is a special case of
p-LBP by setting r¼ 0;R¼ 1;AðPr

cÞ ¼ Ic, while POEM [27] is also a
special case of p-LBP by setting r¼ 3;R¼ 5;AðPr

cÞ ¼HOGðPr
cÞ, in

which HOGðPr
cÞ is the histogram of gradients for image patch Pc

r.
LXP was first proposed in [25] for encoding the Gabor phase in a
self-similarity manner by comparing the quantized phase orienta-
tion of the central pixel with that of its neighboring pixels. We also
extend it to p-LXP and formulate it in the same way as Eq. (6),
except that the similarity measure is defined by

DðAiðPr
cÞ;AiðPr

cRn
ÞÞ ¼ 1; AiðPr

cÞaAiðPr
cRn
Þ

0 otherwise:

(
ð8Þ

The encoding process of p-LXP is illustrated in Fig. 5, and traditional
LXP descriptor is a special case of p-LXP by setting r¼
0;R¼ 1;AðPr

cÞ ¼ GPðxc; ycÞ, in which GPðxc; ycÞ is the Gabor phase for
the central pixel. Compared with traditional LBP, the defined p-LBP/
LXP has the following merits if proper statistic attributes are adopted:

1. Instead of pixel intensity which is sensitive to illumination and
noise variations, robust statistic attributes in a local patch are
utilized to represent the central pixel, thus making p-LBP/LXP
much more robust.

2. The patch-based self-similarity calculation can provide richer
information about face images, and also make p-LBP/LXP less
sensitive to pose variations.

2.3. PWMO feature extraction

In order to design a robust, discriminative and computationally
efficient descriptor for face representation, we propose a novel
descriptor following the framework of the generalized p-LBP/LXP.
The proposed PWMO descriptor consists of two parts: patterns of
Weber magnitude (PWM) and patterns of Weber orientation
(PWO). For a specific face image, PWM encodes the histogram of
Weber magnitude by p-LBP with AðPr

cÞ defined as follows:

AðPr
cÞ ¼ histogram_wmðPr

cÞ; ð9ÞFig. 3. The average distribution of Weber orientation over 10,000 face images.

Fig. 4. Illustration of encoding process of p-LBP. Fig. 5. Illustration of encoding process of p-LXP.
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where histogram_wmðPr
cÞ is the histogram of Weber magnitude for

the patch centered at ðxc; ycÞ with the radius equal to r. It is
calculated by dividing the Weber magnitude ranging from
½�π=2;π=2� into binwm bins, and the vote weight for each bin is
the summation of the absolute Weber magnitude.

PWO encodes the dominant Weber orientation by p-LXP with
AðPr

cÞ defined as follows:

AðPr
cÞ ¼ dominant_woðPr

cÞ; ð10Þ
where dominant_woðPr

cÞ is the dominant Weber orientation with
the largest accumulative magnitude across certain gradient orien-
tation in the patch centered at ðxc; ycÞ with the radius equal to r.
The dominant orientation could be easily found with the help of
the histogram of gradient orientation (calculated by Eq. (4)) and
the gradient magnitude defined by

ξomðxcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1�x5

xc

� �2

þ x3�x7
xc

� �2
s

; ð11Þ

where the pixels xc; x1; x3; x5; x7 are illustrated in Fig. 1(a), and the
normalization by xc is to suppress the impact of uneven illumina-
tion. We denote the number of orientation bins as binwo. An
intuitive illustration of the derivation of dominant_woðPr

cÞ is illu-
strated in Fig. 6, where binwo ¼ 4.

To represent the face image compactly by the spatial histogram of
PWM and PWO, the uniform binary patterns are used. A LBP code is
‘uniform’ if it contains no more than two 0–1/1–0 transitions. For
more details, refer to [15]. To encode both texture and structure
information for human face, the code map of a face image is divided
into several nonoverlapping blocks and histogram computed in each
block is concatenated together to form the final representation. In our
scheme, the spatial histograms of PWM and PWO are concatenated
into a single feature vector, which is the proposed patterns of Weber

magnitude and orientation (PWMO). The framework of face repre-
sentation based on PWMO is illustrated in Fig. 7, in which binwm ¼ 2,
binwo ¼ 4. Compared with POEM [27], which utilizes HOG of the local
patch as the statistic attribute of the central pixel, the proposed
PWMO takes advantage of the histogram ofWeber magnitude and the
dominant Weber orientation. Both of them prove to be much more
robust [32,33] and discriminative for local pattern description than
SIFT, LBP and Gabor [31], thus expecting better representation ability.

Let us analyze whether our proposed PWMO satisfies the three
criteria for well-designed local descriptors, which are defined
in Section 1.

1. The two patch statistic attributes proposed in Eqs. (9) and (10)
can inherit the robustness to illumination and noise variations
as indicated in Section 2.1, thus PWMO can minish the
intraperson variations caused by the illumination variations
and noises.

2. The p-LBP/LXP encoding scheme and the spatial histogram
model make the face representation less sensitive to the
expression and pose variations and small registration error.

3. The combination of robust patch statistics, the p-LBP/LXP
encoding scheme and the spatial histogram model can well
capture the discriminative texture and structure information.

4. The computations of the two patch statistic attributes proposed
in Eqs. (9) and (10) are efficient by taking advantage of
integral image.

In conclusion, our proposed PWMO should be robust, discrimina-
tive and computationally efficient. Although the proposed local feature
extraction approach (i.e., PWMO) can be directly applied to face
representation, the dimensionality of the obtained feature sets is
relatively high. Thus we should apply feature selection technology to
reduce the feature dimensionality. Fisher linear discriminant (FLD) [5]
proves to be a successful approach for discriminative feature selection
of face images. However, in high dimensional space, FLD suffers
heavily from ‘small sample size (SSS)’ problem, which means that
the sample size is much smaller than the feature dimensionality. To
address this problem, we adopt the block-based Fisher's linear
discriminant (BFLD) approach proposed by Xie et al. [26]. Moreover,
lots of work [13,24,25] have demonstrated that the features extracted
from different facial areas take different discriminative information
and thus should be assigned with different weights. We take
advantage of the Fisher separation criterion (FSC) [25,35] to evaluateFig. 6. Illustration of the calculation of the dominant Weber orientation.

Fig. 7. An illustration of the framework based on PWMO for face representation.
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the discriminative power of different block areas and then assign
different weights to different blocks. The framework of PWMO feature
extraction along with BFLD is illustrated in Algorithm 1.

Algorithm 1. Feature extraction using PWMO and block-based
Fisher linear discriminant (FLD) matrices.

Input: An input face image, I; The learned block-based FLD
projection matrix, Ui ði¼ 1;2;…;MÞ;

Output: M low-dimensional PWMO feature vectors, Fi;
1: For face image I, divide it into blocks Bi ði¼ 1;2;…;MÞ
2: for each block Bi, iA ½1;M� do
3: Compute its Weber magnitude and orientation, as

Eqs. (3)–(4)
4: Extract the PWM and PWO:

(i) Encode the Weber magnitude with p-LBP as Eqs. (6),
(7), (9);

Encode the Weber orientation with p-LXP as Eqs. (6), (8),
(10);

5: Partition PWM and PWO into nonoverlapping sub-blocks
and calculate their histograms

6: Concatenate the spatial histograms of its sub-blocks
together into a high-dimensional feature vector Hi

7: Calculate its low-dimensional vector Fi using the FLD
transforms : Fi ¼ ðUiÞTHi.

8: end for

2.4. Single-scale vs. multi-scale

Multi-scale feature extraction can capture local salient patterns
in different granularities, thus resulting in more powerfully dis-
criminative ability. For example, multi-scale LBP, obtained by
varying the sampling radius, has demonstrated better perfor-
mance for both texture classification [14] and face recognition
[34].

In this paper, we will show the performance of both single-scale
PWMO (hereafter, PWMO for short) and multi-scale PWMO. Single-
scale PWMO has lower feature dimensionality, while multi-scale
PWMO could provide better performance. For single-scale PWMO,
we empirically determine the optimal parameters, and note that the
optimal (r,R) for PWM and PWO should not necessarily be equal. For
multi-scale PWMO, we calculate the patch-based self-similarity by
performing p-LBP and p-LXP at different scales of cells and blocks, i.e.,
different configurations of (r,R). In general, multi-scale PWMO can
capture not only the microstructures but also the macrostructures,
thus can improve the discriminative power compared with a single
resolution of (r,R). An illustration of multi-scale PWMO with different
(r,R) is given in Fig. 8. We can see that, for a small scale, the local
micropatterns can be well represented, which is significant for
discriminating facial details. On contrast, for a larger scale, the

macropatterns, containing complementary information to small scale
details, can be well captured.

3. Experimental results

In this section, extensive experiments are carried out for illustrat-
ing the effectiveness and efficiency of our proposed method. Specifi-
cally, two large publicly available face databases, FERET [36] and FRGC-
204 [3], are utilized for performance evaluation of several state-of-the-
arts' methods. These face databases and the following experiment
setup include variant variations such as illumination, expression,
aging, occlusion, noise, blur, and small pose.

We compare our proposedmethodwith five other local descriptor-
based methods: LBP [15], POEM [27], LGBP [24], LGXP [26] and spsLBP
[20]. In order to keep more spatial information, in our experiments we
empirically extract the LBP histograms in 8�8 blocks with 59 bins,
each corresponding to a uniform pattern. The implementation of
POEM is provided by Dr. Vu and the parameters are set according to
[27]. The parameters of Gabor wavelets are set according to [26].

The nearest neighbor classifier is used throughout all experi-
ments. For spatial histograms of all local descriptors, the similarity
measure is defined by the histogram intersection:

dðH1;H2Þ ¼
X
i

minðhi1;hi
2Þ; ð12Þ

where H1 and H2 are two histograms, and h1
i , h2i are the i-th bin

values, respectively.
For BFLD, we divide each face image into 16 ð4� 4Þ nonover-

lapping blocks and perform BFLD block-wisely. We empirically
retain 200 dimensions for each block, and thus the final dimen-
sionality for a specific face image is 3200. Finally cosine distance is
adopted as the similarity measure for each block.

3.1. Experiment I: FERET database

We use the standard FERET protocol [36] to conduct our experi-
ments. The gallery set Fa consists of 1196 images of 1196 subjects.
There are four probe sets: Fb (different expressions with gallery, 1195
images of 1196 subjects), Fc (different illumination conditions with
gallery, 194 images of 194 subjects), Dup I (images taken later in time,
722 images of 243 subjects), Dup II (images taken at least 18 months
after the corresponding gallery, 234 images of 75 subjects). All face
images are properly aligned, cropped and resized to 128�128 with
the centers of the eyes fixed at (29,34) and (99,34).1 No further
preprocessing is performed. Some sample face images from FERET are
demonstrated in Fig. 9.

Parameters evaluation: For PWMO, it is not easy to theoretically
determine the optimal parameter configuration. We test hundreds

Fig. 8. Illustration of multi-scale PWMO for different (r,R).

1 As indicated by [37], slight eye coordinates errors exist for some FERET
images and the updated eye-coordinate files is provided by Dr. W. Deng.
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of different parameter configurations ðr;R; binwm; binwoÞ on FERET
database and set the parameters empirically. Figs. 10 and 11 plot
the recognition rates versus variant bin numbers (i.e., binwm and
binwo) and (r,R) respectively, fromwhich several useful conclusions
can be drawn:

1. For PWM, binwm larger than 2 provides little help when
expression (Fb) and illumination (Fc) variations exist, probably
due to the unimodal distribution of Weber magnitude illu-
strated in Fig. 2. However, when aging (Dup II) variation exists,
binwm larger than 2 largely degrades the performance, probably
because that more bins are sensitive to the facial wrinkles in
aging faces.

2. For PWO, as shown in Fig. 3, binwo fewer than 3 is not able to
provide enough discriminative power, while the satisfying
performance can be achieved by setting binwo ¼ 4. Increasing
bin number not only provides little help but also brings extra
computational cost.

3. A slightly larger scale may extract more complementary and
discriminative information and eliminate more noise, and thus
achieve better performance. However, the scale cannot be too
large. A much larger scale may fail to represent the local

micropatterns and lead to worse robustness to illumination
variants and thus achieve poorer performance.

4. With proper parameters, PWM is relatively more robust than
PWO, especially under varying illumination conditions.

According to the above results, for single PWMO, we can regard
the parameters with the higher accuracy as the optimal ones in
terms of recognition rates. For PWM, we set r¼3, R¼5, binwm ¼ 2.
For PWO, we set r¼1, R¼3, binwo ¼ 4. For multi-scale PWMO, We
test hundreds of different configurations (r,R) on multiscale
PWMO, and we obtain a relatively higher recognition rate when
we set ðr;RÞ ¼ fð0;1Þ; ð1;3Þ; ð2;5Þ; ð3;7Þg, binwm ¼ 2, binwo ¼ 4. This is
the default parameter configuration in the following experiments.

Spatial histogram of local descriptors: Firstly, we want to check
whether the spatial histogram of PWMO descriptor is suitable for
face recognition, and conduct experiments on standard FERET
protocol. The results are illustrated in Table 1, from which we
could see that PWMO is a rather effective feature extraction
approach. Especially, when illumination and aging variations exist,
PWMO performs much better than LBP, spsLBP, POEM, LGBP, and is
comparable to LGXP. It can also be concluded that (1) PWM and
PWO can provide complementary discriminative information; and

Fig. 9. Sample face images in FERET face database, and the images in each row correspond to the same subject.

Fig. 10. The recognition rates versus the bin number for (a) PWM; (b) PWO.
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(2) multi-scale PWMO can further enhance the overall perf-
ormance.

BFLDþblock weighting scheme: To learn the BFLD projection
matrix and calculate the weights for different blocks, we take
advantage of the standard training set for FERET database, which
consists of 1002 frontal images of 429 subjects.

The partitioning scheme is illustrated in Fig. 12(a), and the
corresponding weights for different block areas are visualized in
Fig. 12(b). As can be seen, the eye areas play a more important role
in face recognition, which agrees with the conclusions in [15,13].

In order to help understand the performance of our proposed
algorithms, we present a thorough analysis about the effectiveness of
every important step and summarize into Table 2. From this table, we
can see that the improvement mainly includes four important steps:

the combination of PWM and PWO, multi-scale scheme, BFLD and
weighting scheme for BFLD. The combination of PWM and PWO helps
PWMO obtain better performance than PWM and PWO upon all four
subsets. The feature selection phase by BFLD improves a lot the
recognition rates, even up to 11% on the Dup I and Dup II subsets.
Furthermore, both multi-scale scheme and weighting scheme can
further enhance the overall performance.

To further demonstrate the effectiveness of our proposed method,
we compare it with other state-of-the-art methods reported in
literatures. The results are summarized in Table 3. FERET97 Best [36]
is the best identification performance of partially automatic algorithms
(e.g., USC uses dynamic link architecture representation with elastic
graph matching as similarity measure) tested in March 1997. Fusing

Fig. 11. The recognition rates versus the configuration of (r,R) for (a) PWM; (b) PWO.

Table 1
Recognition rates of different feature extraction methods on FERET database. Note
the results with n are directly cited from the original paper.

Methods Fb (%) Fc (%) Dup I (%) Dup II (%) Average (%)

LBP [15]n 93 51 61 50 75
LGBP [24]n 96 96 74 70 87
LGXP [26]n 98 99 82 83 92
POEM [27]n 98 96 78 77 90
8-spsLBP[20]n 96 95 71 65 85

PWM 93 98 80 79 88
PWO 92 85 75 76 85
PWMO 94 99 82 81 90
Multi-scale PWMO 95 99 84 83 91

Fig. 12. Illustration of (a) the block partitioning and (b) weighting scheme based on
Fisher separation criterion.

Table 2
The improvement of our proposed methods in terms of recognition rates on FERET
database.

Methods Fb (%) Fc (%) Dup I (%) Dup II (%)

PWM 93 98 80 79
PWO 92 85 75 76
PWMO 94 99 82 81
Multi-Scale PWMO 95 99 84 83
PWMOþBFLD 98 99 93 92
PWMOþWBFLD 99 99 94 93
Multi-scale PWMOþBFLD 99 99 94 94
Multi-scale PWMOþWBFLD 99 99 95 95

Table 3
Performance comparison of proposed method with several state-of-the-art
approaches on FERET database. Note the results with n are directly cited from
the original paper.

Methods Fb (%) Fc (%) Dup I (%) Dup II (%)

FERET97 Best [36]n 96 82 59 52
LBP [15]n 97 79 66 64
Fusing(Gabor and LBP) [17]n 98 98 90 85
POEMþWPCA [27]n 99 99 89 85
LBPþESRC [37]n 97 95 94 92
(LGBPþLGXP)þBFLD [26]n 99 99 94 93
GOM [39]n 99 100 95 93

PWMOþBFLD 98 99 93 92
PWMOþWBFLD 99 99 94 93
Multi-scale PWMOþBFLD 99 99 94 94
Multi-scale PWMOþWBFLD 99 99 95 95
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(Gabor and LBP) [17] applies the feature-level fusion of the Gabor
wavelets and LBP with PCA. POEM [27] represents patch-based self-
similarity by the accumulated gradient magnitudes across different
directions. LBPþESRC [37] exploits LBP feature with the Extended
Sparse Representation-Based Classifier (ESRC). (LGBPþLGXP)þBFLD
[38] is the fusion of LGBP and LGXP. GOM [39] takes advantage of
different kinds of ordinal measures on magnitude, phase, real, and
imaginary components of Gabor images. As can be seen, multi-scale
PWMO performs better than PWMO, and the combination of PWMO
and BFLD can achieve high accuracy in all four probe sets. Moreover,
the block weighting scheme (denoted as WBFLD) can further improve
the performance. Our best result is comparable to those reported in
the state-of-the-arts.

3.2. Experiment II: impact of noise and pose variations

Impact of noise: To our best knowledge, few works have been
conducted to evaluate the tolerance of different face representa-
tions to noise. However, for the face recognition tasks under
uncontrolled circumstances, noisy conditions are inevitable.
Therefore, it is important for a local descriptor to be insensitive
to noise for robust face recognition in real-world applications.

In this subsection, we test the robustness of PWMO to both
additive and multiplicative noise, and also compare its performance
with that of POEM and LBP. We conduct experiments on FERET data
set, with Fa as the gallery and the noise-polluted (additive white
Gaussian noise and multiplicative speckle noise) versions of Fa as the
probes. The results are illustrated in Fig. 13. It is clear that LBP is
vulnerable to noises and degrades much even with small noise level.
Our proposed PWMO are much more robust than LBP and POEM
under both the additive andmultiplicative noisy conditions. Especially,
exploiting multi-scale information tends to be more robust and
discriminative in seriously noisy circumstances.

Impact of pose variations: Although many practical systems aim
at the applications of frontal faces recognition, small pose varia-
tions are inevitable in real-world applications. We further empiri-
cally investigate the sensitiveness of different local descriptors to
pose variations. We take advantage of the non-frontal subset of
FERET database, which contains images captured at different view
points from 200 subjects. We use the frontal images (ba) as the
gallery, and the images taken at viewpoint angles of �401 (bh),
�251 (bg), �151 (bf), þ151 (be), þ251 (bd), þ401 (bc) are used as
probes. The recognition rates versus viewpoint angles are illu-
strated in Fig. 14. We can see that all descriptors are robust to
small pose variations (r251), and the performance degrades
much when the pose variation becomes larger. Although our
proposed PWMO is more robust compared with LBP and POEM,
pose-invariant face recognition is still an open problem [40].

3.3. Experiment III: FRGC-204

FRGC version 2.0 experiment 4 [3] is designed to compare different
face verification technologies for face images with uncontrolled
conditions, including illumination variations, expression changes,
time elapse, blurred images and some occlusions. The data set for

Fig. 13. (a) The recognition rates versus the variance of the additive Gaussian white noise; (b) the recognition rates versus the variance of the multiplicative speckle noise.

Fig. 14. The recognition rates versus the viewpoint angle.
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FRGC-204 .is divided into training and validation partitions. The
training partition was collected from 222 subjects in the 2002–
2003 academic year and consists of 12,776 images (6388 con-
trolled still image and 6388 uncontrolled still image). The valida-
tion partition was collected from 466 subjects in the 2003–2004
academic year, which consists of a target set with 16,028 con-
trolled images and a query set with 8014 uncontrolled images.
Therefore, FRGC-204 is rather challenging due to its large scale and
variant unexpected variations. In our experiments, all the face
images are aligned, cropped and resized via the provided eye
coordinates in the same manner with that of Section 3.1 Some
sample face images from FRGC are demonstrated in Fig. 15.

According to the protocol of FRGC, three receiver operator char-
acteristic (ROC) curves are generated: ROC I, ROC II, ROC III, each
corresponding to the images collected within semesters, within a year
and between semesters, respectively. Typically, for ease of perfor-
mance comparison, most researchers report the verification rates (VR)
at 0.1% false acceptance rate (FAR) in their work.

In our experiments, the training partition is utilized to learn the
BFLD projection matrix and calculate the weights for different blocks.
Fig. 16 plots the three ROC curves of different local descriptors, all with
WBFLD or FLD as the feature selector. Comparisons with BEE
(Biometric Experimentation Environment) baseline and several repre-
sentative methods are summarized in Table 4. We divide the methods
into three categories according to the features exploited in the

methods: global feature, local feature and ensemble of global and
local feature. Global feature based on the subspace learning (e.g., PCA)
or spatial-frequency transformation technologies (e.g., Fourier feature)
to explore the whole face image. Local feature extracts and encodes
the local structure information of facial regions in a manner of patch
filtering. Ensemble of global and local feature is a combination of the
global and local feature. As can be seen, our proposed methods are
much better than the BEE baseline and can provide better or
comparable results than most of the methods in the literature. Our
proposed method outperforms most competing local descriptors,
including LBP, POEM, LGBP, and LGXP. The VR of 84.9% for ROC III
achieved by multi-scale PWMO is comparable to that of the fusion
method of [26] where LGBP and LGXP are combined using score-level
combination. The results in [17], based on the kernel combination of
Gabor and LBP, are worse than ours. However, our methods still
cannot outperform some leading methods such as GOM [39] and the
ensemble of the global Fourier feature and local Gabor feature [42]. An
important conclusion drawn from Table 4 is that the combination of
global and local features can further boost the performance of face
recognition systems.

3.4. Efficiency analysis

In this subsection, we discuss the efficiency of PWMO by compar-
ing the storage requirement and the computational cost, which are

Fig. 15. Sample face images in FRGC face database, and the images in each row correspond to the same subject.

Fig. 16. ROC curves corresponding to the LBP, POEM, PWMO and multi-scale PWMO based face representation approaches on FRGC2.0 Experiment 4: (a) ROC I. (b) ROC II.
(c) ROC III.
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critical for large-scale face recognition applications, with other com-
peting local feature extraction algorithms. We measure the storage
cost by the feature dimensionality per face image, and measure the
computational cost by the average processing time per image calcu-
lated from 1000 face images (128�128). The computational cost of
GOM method are referred to the original paper. All the rest of the
algorithms are implemented using 64-bit Matlab platform on a PC
with Intel I7 CPU (2.80 GHz) and 4 GB memory. The results are
summarized in Table 5.

As can be seen from Tables 3 to 5, our proposed PWMO/multi-scale
PWMO is a good balance between efficiency and discriminative
power. More specifically, our proposed method is much more
discriminative than LBP and the recently proposed POEM, and can
achieve comparable results to the fusion of LGBP and LGXP with 1=7
storage requirement and 1=10 computational cost, which implies the
superiority of PWMO for real-time face recognition tasks.

4. Conclusion

In this paper we have proposed a novel local descriptor, called
patterns of Weber magnitude and orientation (PWMO), for face
representation and recognition. The effectiveness of PWMO comes
from several aspects including the insensitiveness of Weber magni-
tude and orientation to variant variations such as illumination and
noise, the patch-based self-similarity encoding scheme, the spatial
histogram modeling, and the multi-resolution representation. To
further reduce the feature dimensionality, we adopted BFLD to select

the most discriminative feature sets, and the block weighting scheme
based on Fisher separation criteria has been incorporated for dis-
criminant classification. Experimental results on two publicly available
face databases have evidently illustrated the effectiveness and effi-
ciency of the proposed method. Especially on the challenging FRGC-
204 face database, we have achieved comparable verification perfor-
mance as the recently proposed method based on the fusion of LGBP
and LGXP, while requiring much less storage and computational cost.
Due to its remarkable performance and low computational cost in face
recognition applications, we expect that the proposed method is a
good choice for the recognition of other objects.
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